Advanced Wastewater Treatment Technologies

Prof. Ligy Philip Dept. of Civil Eng., IIT Madras, India Email – ligy@iitm.ac.in

Introduction

- Industrial wastewater- variety of pollutants with varying concentrations and properties
- No single technology available to treat all industrial wastewaters
- Technology selection- based on type of pollutants, concentration of pollutants and treated water quality requirement
- Treatments: A combination of Physical, physico-chemical and biological processes

Physical Processes

- Sedimentation
- Filtration
 - Surface filtration
 - Sieves, cloth filters, membrane filters
 - Deep filtration
 - Sand filter
 - Other media filters
- Evaporation
 - Natural evaporators
 - Vacuum Evaporators
 - Mechanical evaporators
- Gas Transfer

Physico-Chemical Processes

- Coagulation and flocculation, electro coagulation
- Adsorption- New and tailor made adsorbents
- Ion Exchange -
- Precipitation
- Membranes RO, CDI, electro dialysis
- Oxidation Reduction
 - Advanced Oxidation

Biological Processes

- Aerobic
- Anaerobic
- Biological processes can be modified by using enriched microbes for selective complex organic wastes.

Advance oxidation processes(AOPs)

• Volume and treatment time is considerably reduced.

Circuit Diagram for the Reactor set-up

Singh Raj Kamal, Babu V., **Philip Ligy**, Sarathi R., (2016), Disinfection of Water Using Pulse Power Technique: A Mechanistic Perspective, RSC Advances, 6, 11980 – 11990.

Trend of ROS formation

Effects of system parameters on OH formation

Effects of system parameters on H₂O₂ formation

Kinetics study of ROS formation

Voltage (kV)	Rate of Reaction for OH radical (mol L–1 s–1)	Rate of Reaction for H ₂ O ₂ (mol L–1 s–1)	Rate of Reaction for O ₂ ²⁻ (mol L–1 s–1)	Rate of Reaction for O ₃ (s ⁻¹)
17	3.1	1.0	0.4	0.195
20	4.0	2.0	0.6	0.225
23	5.3	3.4	1.0	0.28

Note: The unit for r_{OH} , r_{H2O2} and r_{O3} is 10^{-6} mol L⁻¹ s⁻¹, 10^{-6} mol L⁻¹ s⁻¹ and 10^{-6} mol L⁻¹ s⁻¹.

3.Methylene Blue Degradation Study

Singh Raj Kamal, Babu. V., **Philip Ligy**, Sarathi R., (2016), Applicability of Pulsed Power Technique for the Degradation of Methylene Blue, Journal of Water Process Engineering, 11, 118 – 129.

Effects of system parameters

Mass Spectra for Methylene blue and its intermediates

Technical Achievements

Rapid degradation and mineralization of Methylene blue (dye)

• Description:

Investigation of PPT efficiency for the degradation of dye.

• Novelty:

- Different ROS such as OH, H₂O₂, O₃ and O₂⁻ quantification in different environmental conditions.
- Effect of different system parameters on treatment efficiency.
- > Under PPT, methylene blue degradation pathway was proposed.

4.ECs degradation study

Singh Raj Kamal, **Philip Ligy**, Sarathi R., (2016), Rapid removal of carbofuran from aqueous solution by pulsed corona discharge treatment: Kinetic study, oxidative, reductive degradation pathway and toxicity assay, Ind. Engg. Chem. Res., Accepted manuscript.

Pesticide - Carbofuran

Initial Concentration – 1ppm

Voltage effect

Frequency effect

Singh et

Effects of Environmental Parameters

Effect of Initial Carbofuran Concentration

Table – Degradation kinetics of carbofuran degradation

Initial	First order	R ²	t _{1/2} (min)
concentration	rate constant		
(mg/L)	(min ⁻¹)		
0.5	2.68	1.00	1.0
1	1.71	0.93	1.2
2	0.82	0.97	1.3
5	0.57	0.97	1.6
10	0.61	0.92	2.5
20	0.23	0.91	3.5
30	0.32	0.95	5.6

Singh et

Main Carbofuran Intermediates – LC/MS analysis

Compound	Molecular mass (m/z) with Na⁺ adduct	Actual molecular mass (m/z)	Chemical structure
Carbofuran	244	221	
A	260	237	CH ₃ CH ₃ CH ₃ CH ₃
В	232	209 Sinch at	HOILING CH ₃ HOILING CH ₃ HOILING CH ₃
		Singh et	

Compound	Molecular mass (m/z) with Na ⁺ adduct	Actual molecular mass (m/z)	Chemical structure
C	187	164	CH ₃ CH ₃ OH
D	159	136	OH
E	232	209	ОН
F	133	110	но с он
G	166	143	

Proposed pathway for Carbofuran degradation

Eco-toxicity assay for Carbofuran degradation

• Model Micro-alga – *Chlorella Vulgaris*

Singh et

Pesticide: 2-4-D

Voltage and Frequency effect

Effect of radicals quencher

Pharmaceuticals Active Compounds (PACs)

PACs – Diclofenac, Carbamazepine and Ciprofloxacin – 1ppm

Voltage – 25 kV and Frequency – 25 Hz

LC-MS Analysis

Diclofenac (DCF)

Diclofenec

Carbamazepine (CBZ)

Carbamazepine

Ciprofloxacin (CPF)

Ciprofloxacin

Effect of pH and radical scavengers

Single and mixed pollutant degradation

Toxicity assay

5. Continuous Reactor study

Continuous Reactor

- Reaction volume 29 cm x 19 cm x 0.5 cm
- Spacing between the needles = 2 cm (optimized in batch reactor)
- Optimized flow rate = 10 mL/min

ECs degradation study

Initial concentration – 1ppm

ECs degradation study

Initial conc. – 10 ppm

Summary/Conclusion

- Different ROS such as OH, H₂O₂, O₃ and O₂ quantification in different environmental conditions.
- Effect of different time mode on disinfection efficiency.
- Combined effect of system parameters on disinfection efficiency and empirical model development.
- Understanding the bacterial disinfection mechanism in PPT.
- Study on dye degradation and its fate in PPT process.

Summary/Conclusion

- Complete degradation of ECs (Carbofuran, 2-4-D, DCF, CBZ and CPF) was achieved within 4 to 6 min treatment time in batch study.
- Environmental parameters significantly affect the degradation efficiency.
- Possibility of Reductive pathway in plasma technology not only oxidative pathway.
- Complete mineralization and detoxification of ECs was achieved.
- Continuous reactor design and efficiency was evaluated.

Development and Performance Evaluation of a Hybrid Treatment System for the Complete Treatment of Pharmaceutical Wastewater

PROCESS IN PHARMACEUTICAL INDUSTRY

DISTRIBUTION OF VOLATILE SOLVENTS IN WASTEWATER

MAJOR PROBLEM : VOC emissions during the treatment of pharmaceutical wastewater.

LIMITATION OF EXISTING TREATMENT SYSTEMS

- Only focus on removal of organic pollutants
- **Emission of VOC is not accounted**

Saravanane et al., 2001;

Ince et al., 2002

Raj and Anjaneyulu, 2005

"Reduction of VOC emission from the treatment units"

LIMITATIONS IN EXISITING TREATMENT SYSTEM FOR REMOVAL OF VOC

- Individual pollutant study
- Degradation of VOC at low concentration
- □ No focus on the reduction of VOC emission from

bioreactors

Cattony et al., 2005

Quesnel and Nakhla, 2005

Ozdemir et al., 2010

Dawery, 2013

Presence of high biomass is reported to reduce VOC emissions

Submerged aerated biological filter (SABF) and Membrane bioreactor (MBR)

(Cheng, 2009; Min and Ergas, 2006)

- □ Need to evaluate the performance **SABF** to treat mixture of VOC
- □ Effect of operational parameters like air flow rate, hydraulic retention time (HRT)

and organic loading rate (OLR) on VOC emission is an area to be explored

□ Feasibility of **Membrane bioreactor** as a post treatment unit and its potential to

reduce VOC emission is an area to be explored

METHODOLOGY

POLLUTANTS IN UNTREATED PHARMACEUTICAL WASTEWATER IN INDIA

Methanol (2500–3000 mg/L) , Acetone (500 mg/L – 1000 mg/L), Benzene and toluene (400–

700 mg/L), Dichloromethane (120 - 380 mg/L)

(Gupta et al., 2005, Virnig et al., 2003)		
otdales with single substrate biodegradation		
Methanol, acetone, benzene	Toluene	Dichloromethane (DCM)
100, 300, 500, 700 and 1000 mg/L	100, 300 and 500 mg/L	10 and 20 mg/L
Dual substrate interaction studies with dichloromethane		
Low concentration studies	High concentration studies	
Methanol- DCM / Acetone- DCM	Methanol- DCM / Acetone- DCM	
Benzene- DCM/ Toluene- DCM	Benzene- DCM/ Toluene- DCM	
Non chlorinated solvent ~ 100 mg/L	Non chlorinated solvent ~ 1000 mg/L,	
DCM ~ 50mg/L	DCM ~ 50mg/L	
Ŭ		Ŭ
Multiple Substrate Interaction studies		
In the absence and presence of	Mixture of methanol, acetone, benzene dichloromethane	
Dichloromethane	and toluene at equal concentration (50, 100, 200 mg/L)	

BATCH BIODEGRADATION RESULTS

SINGLE SUBSTRATE DEGRADATION

RESULTS

- Degradation of Non chlorinated pollutants were faster
 Dichloromethane was observed to
- Dichloromethane was observed to recalcitrant to biodegradation
- Burkholderia kururiensis and Bacillus cereus were
 - predominant species.
- Monod inhibition model predicted single pollutant biodegradation

Priya, V.S., Philip, L. (2013). Biodegradation of Dichloromethane along with other VOCs from Pharmaceutical

wastewater. Applied Biochemistry and Biotechnology. 169, 1197-1218.

DUAL SUBSTRATE INTERACTION

STUDIES

Degradation of 50 mg/L of dichloromethane in the presence of 100 mg/L

of non chlorinated solvents

Degradation of 50 mg/L of dichloromethane in the presence of

1000 mg/L of non chlorinated solvents 50 1000 substrate (mg/L) (140 30 20 20 800 600 400 200 10 0 0 80 96 104 24 48 72 120 144 168 192 0 8 24 32 48 72 96 104 time (h) time (h) ···· Methanol (1000 mg/L) Acetone (1000 mg/L) · • · DCM (Methanol) DCM (Acetone) --- Toluene - (500 mg/L) --- Benzene (1000 mg/L) 🗕 DCM (Toluene) - DCM- (Benzene)

MULTIPLE SUBSTRATE INTERACTION STUDIES

□ Absence of DCM : All the non chlorinated solvents were degraded much faster compared to their degradation in a single pollutant system.

- □ **Presence of DCM** : Presence of DCM prolonged the degradation of all the non chlorinated solvents
- Enhanced degradation of dichloromethane in the presence of other solvents

CONCLUSION FROM BATCH STUDIES

- All the target pollutants were degraded in the aerobic conditions
- □ First report on the enhanced degradation of dichloromethane in the presence of other non chlorinated pollutants
- □ Low concentrations (100 mg/L) of non chlorinated solvents did not interfere with the DCM degradation
- High concentrations of non chlorinated solvents (1000 mg/L) enhanced the DCM degradation and a severe competition between the chlorinated and the non chlorinated solvents was observed.
- □ In multiple substrate system also, presence of DCM prolonged the degradation of the other non chlorinated solvents.

Priya, V.S., Philip, L. (2013). Biodegradation of Dichloromethane along with other VOCs from Pharmaceutical wastewater. *Applied Biochemistry and Biotechnology*. 169, 1197–1218.

ODEGRADATION STUDIES IN CONTINUOUS BIOREACTORS

ACTIVATED SLUDGE PROCESS

SUBMERGED AERATED BIOLOGICAL FILTER

PERFORMANCE OF SUBMERGED AERATED BIOLOGICAL FILTER (SABF) UNDER DIFFERENT OPERATING CONDITIONS

COD REMOVAL FROM SABF

VOC EMISSION FROM SABF

Priya.V.S., Philip,L. Treatment of Volatile Organic Compounds in Pharmaceutical Wastewater using Submerged Aerated Biological Filter (Accepted in Chemical Engineering journal)

PERFORMANCE EVALUATION OF MEMBRANE BIOREACTOR

SABF COMBINED WITH MEMBRANE BIOREACTOR

▪••••►Liquid flow ••••• air flow

ASP COMBINED WITH MEMBRANE BIOREACTOR

MEMBRANE BIOREACTOR

TREATMENT OF EFFLUENT FROM SUBMERGED AERATED BIOLOGICAL FILTER USING MEMBRANE BIOREACTOR

VARIATION IN FLUX

VARIATION IN TRANSMEMBRANE PRESSURE

VARIATION IN COD REMOVAL

VARIATION IN VOC EMISSION

RESULTS

TREATMENT OF EFFLUENT FROM AERATION TANK OF ACTIVATED SLUDGE PROCESS USING MEMBRANE BIOREACTOR

CONCLUSIONS

- □ Submerged aerated biological filter were more resistant to higher organic loading rate than compared to activated sludge process.
- □ Limited mass transfer of VOC to the gas phase at low air flow rate reduced VOC emission from submerged aerated biological filter
- Optimization of operating conditions such as air flow rate, hydraulic retention time and organic loading rate reduced the VOC emissions from submerged aerated biological filter
- □ Effluent from SABF were effectively treated using membrane bioreactor.
- □ Complete removal of VOC from SABF effluent was achieved while adopting internal MBR configuration.
- □ Flux reduction and TMP rise were more significant during the treatment of ASP effluent
- □ SABF can be coupled along with the MBR operated under internal configuration for the complete removal of VOC from the pharmaceutical wastewater.

BIOREMEDIATION OF Cr(VI) CONTAMINATED SOIL AND GROUND WATER SYSTEMS

MOTIVATION

TamilNadu Chromate Chemicals Limited, Ranipet, Vellore District, Tamilnadu.

Chromium waste Disposal area: 5 acres (2 hectares) 2 x10⁵ Tones of waste)

DEE/VLR/LL-04 DEE VLR LL. 04 100 met/uch/--AR Thistory -**Chromium Leachate in Ground Water**

Cr(VI) Concentration in open wells/bore

CLEANUP METHODS FOR FIELD CONDITIONS

Methods for Remediation of Cr(VI) Contaminated Aquifers

- Pump and Treat systems
- Geochemical fixation
- Permeable Reactive Barriers
- Reactive Zones
- Natural attenuation
- Phyto-remediation

Schematic Representation of a Permeable Reactive Bio-barrier

REACTIVE ZONES

2

BATCH STUDIES

- Bio-kinetic parameters
- Adsorption Parameters

Cr(VI) Reduction Studies with CRB, SRB and IRB, in Combinations

- 1. CRB Aerobic
- 2. CRB Anaerobic
- 2. SRB-Anaerobic
- 3. IRB- anaerobic
- 4. CRB+SRB
- 5. CRB+IRB
- 6. CRB+SRB+IRB

Adsorption Studies Adsorbents– Soil , Sand Adsorbates: 1. Cr(VI) 2. Molasses/Sugar 3. Lithium

4. Cr(III)

Cr(VI) Reduction in Aerobic Conditions

Cr (VI) Reduction by CRB under Anaerobic Condition

Growth of CRB+IRB+SRB under Anaerobic Condition Fe(400ppm,Sulphate(500ppm)

Model

Suffix 1,2,3 represents CRB,SRB,IRB respectively

$$M = \sum_{i=1}^{3} M_{i}$$

$$S = \sum_{i=1}^{3} S_{i}$$

$$Cr_{6} = \sum_{i=1}^{3} Cr_{6i}$$

$$S_i = S\left(\frac{M_i}{M}\right)$$

$$Cr_{6,i} = Cr_6\left(\frac{M_i}{M}\right)$$

$$\frac{dM_{CRB}}{dt} = \frac{M_{CRB} \cdot \mu_{\max,CRB} \cdot S\left(\frac{M_i}{M}\right)}{K_{s,CRB} + S\left(\frac{M_i}{M}\right)} \left(\frac{K_{i,CRB}}{K_{i,CRB} + Cr_6\left(\frac{M_i}{M}\right)}\right)$$

$$\frac{dM_{SRB}}{dt} = \frac{M_{SRB} \cdot \mu_{\max,SRB} \cdot S\left(\frac{M_i}{M}\right)}{K_{s,SRB} + S\left(\frac{M_i}{M}\right)} \left(\frac{K_{i,SRB}}{K_{i,SRB} + Cr_6\left(\frac{M_i}{M}\right)}\right)$$

$$\frac{dM_{IRB}}{dt} = \frac{M_{IRB} \cdot \mu_{\max,IRB} \cdot S\left(\frac{M_i}{M}\right)}{K_{s,IRB} + S\left(\frac{M_i}{M}\right)} \left(\frac{K_{i,IRB}}{K_{i,IRB} + Cr_6\left(\frac{M_i}{M}\right)}\right)$$

Cr(VI) reduction by CRB, SRB and IRB under anaerobic conditions for different initial **Cr(VI)** concentrations

Somasundaram et al., Jl. of Hazard. Mater., 2009

3

BENCH SCALE STUDIES

Sample ports

er flow

Supply tank

2005.01.08 16:04

/4-中

Outlet

Cr(VI) break-through curve with biotransformation, Soil A

Shashidhar et al., Jl. of Hazard. Mater., 2006

Cr(VI) breakthrough just before and after Biobarrier BB1 (Bact conc= 0.0205 mg/g of soil)

Cr(VI) breakthrough just before and after Biobarrier (BB2) (Bact conc= 0.205 mg/g of soil)

20 cm Port

Initial pore velocity 7.3 cm/h

60 cm Port

Shashidhar et al., Jl. of Hazard. Mater., 2007

PILOT SCALE STUDIES

Schematic Diagram of the Reactor

Location of Wells

Cr (VI) Concentration before the Bio-barrier in Bioreactor

Cr (VI) Concentration after the Bio-barrier in Bioreactor

Cr (VI) Concentration in the Blank Reactor before Barrier

Cr (VI) Concentration in the Blank Reactor after the Barrier

PLAN VIEW OF REACTOR CONTAINING FOUR INJECTION WELLS

Injection wells

Cr (VI) Concentration in Reactor before four Injection wells

Cr (VI) Concentration in Reactor after four Injection wells

Experimental and modeling results for temporal variation of Cr(VI) concentration in wells 11-16 (at a distance of 110 cm from inlet) in reactor R1

Experimental and modeling results for temporal variation of Cr(VI) concentration in wells 11-16 in reactor R2

Experimental and modeling results for temporal variation of Cr(VI) concentration at well no 1 in reactor R4 (4 wells system)

Field Demonstration of Bioremediation of Cr(VI) Contaminated Soil and Aquifer in Ranipet, Tamilnadu

SCOPE

- Remediation of at least 5 tons of chromium sludge in the vicinity of Tamilnadu Chromates and Chemicals Limited (TCCL) at the site;
- Demonstration of in-situ bioremediation of Cr(VI) contaminated aquifer in a 5 m ×5 m area of aquifer in the vicinity of Tamilnadu Chromates and Chemicals Limited (TCCL), Ranipet, by injection well - reactive zone technology;

Well locations in the experimental plot

RESULTS Soil Remediation

Variation of Cr(VI) concentration with respect to time in solid waste remediation (Mass of untreated sludge added at various time is mentioned inside the graph)

Variation of total chromium concentration with respect to time in solid waste remediation

Remediated and un-remediated soils

Five Tones of Remediated Soil Leachate from remediated soil

Un-remediated Soil and Leachate from unremediated soil

Aquifer Remediation

Bioremediation using Molasses (Jaggery) as the Carbon Source

Variation of Cr (VI) concentration with respect to time in wells 1 and 2 (molasses as carbon source)

Bioremediation using Sugar as the Carbon Source

- Remediation of Cr(VI) aquifers were also carried out using sugar as the carbon source.
- For this study the initial biomass concentration was reduced to 1/10th of that used in the previous case.
- Carbon source concentration also was reduced to 1/4th and feeding interval was increased to 7-10 days.
- The fate and transport of chromium (both Cr(VI) and Cr(III)), molasses and its derivatives, and microbes during the study period was monitored.

Bioremediation using Sugar as the Carbon Source: Cr(VI concentrations

COD concentrations in various wells during bioremediation using sugar as carbon Source

Total Cr concentrations in various wells during bioremediation using sugar as carbon Source

Water samples from various wells after remediation

Water samples from various wells after remediation

Analysis of Heavy Metals in Aquifer

	Well 1 (mg/L)	Well 2 (mg/L)	Well 3 (Injection	Well 5 (Injection	Well 9	Well 13	Well 14
Metals	× °		well)	well)			
Copper	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Lead	BDL	BDL	0.0925	0.0775	0	0	0
Manga							
nese	0.065	0.067	0.068	0.057	0.017	0.054	0.05
zinc	0.012	0.017	0.2825	0.2175	0.0225	0.07	0.09
Cr(VI)	145.2	140.2	BDL	BDL	BDL	BDL	BDL
Iron	BDL	BDL	0.017	0.023	0.0487	0.032	0.036
Nickel	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Field Applications: Technology Transfer

Radiant Electroplaters

 MR. ALI AKBAR, Radiant Electroplaters, 32 KMA Garden Road, Kodungaiyur, Chennai-600118

NGT Case

- The wastes storage tank breached.
- Contaminated the neighboring industrial plot and groundwater
- Industry was closed

Munjal Showa Ltd.,

- Court Order to Close the Industry
- Fine Rs 5 crores.

Hydro-Geological Conditions

TUBEWELL NO.1

TUBEWELL NO.2

TUBEWELL NO.3

TUBEWELL NO.4 DEPTH: 105 MTRS

DEPTH: 100 MTRS

DEPTH: 150 MTRS

STRATA	TABLE	
GL-12.5 M	DRY SAND & CLAY	
12.5-20 M	FINE SAND	
20-30 M	HARD CLAY	
30-50 M	FINE SAND	
50-60 M	FINE SAND	
60-80 M	HARD CLAY	
80-100 M	FINE SAND	

STRATA	TABLE		
L-12.5 M	DRY SAND & CLAY		
2.5-20 M	FINE SAND		
0-30 M	HARD CLAY		
0-55 M	FINE SAND		
5-65 M	FINE SAND		
5-85 M	HARD CLAY		
5-105 M	FINE SAND		
05- BELOW 50 M	HARD ROCK		

DEPTH: 105 MTRS

TABLE		
Y		
FINE SAND HARD CLAY FINE SAND		

STRATA	TABLE	
GL-12.5 M	DRY SAND & CLAY	
12.5-20 M	FINE SAND	
20-35 M	HARD CLAY	
35-55 M	FINE SAND	
55-65 M	FINE SAND	
65-85 M	HARD CLAY	
85-105 M	FINE SAND	

TUBEWELL NO.5

TUBEWELL NO.6

DEPTH: 105 MTRS

DEPTH: 100 MTRS

STRATA	TABLE		
GL-12.5 M	DRY SAND & CLAY		
12.5-20 M	FINE SAND		
20-35 M	HARD CLAY		
35-55 M	FINE SAND	_	
55-65 M	FINE SAND		
65-85 M	HARD CLAY		
85-105 M	FINE SAND		
		_	

STRATA	TABLE		
GL-12.5 M	DRY SAND & CLAY		
12.5-20 M	FINE SAND		
20-30 M	HARD CLAY		
30-50 M	FINE SAND		
50-60 M	FINE SAND		
60-80 M	HARD CLAY		
80-100 M	FINE SAND		

TUBEWELL NO.7

DEPTH: 100 MTRS

STRATA	TABLE	
GL-12.5 M	DRY SAND & CLAY	
12.5-20 M	FINE SAND	
20-30 M	HARD CLAY	
30-50 M	FINE SAND	
50-60 M	FINE SAND	
60-80 M	HARD CLAY	
80-100 M	FINE SAND	

Shriram Pistons and Rings Ltd, Meerut Road, Ghaziabad, INDIA

MAP SHOWING 02 PLUME FORMATIONS IN AND AROUND LOHIA NAGAR

CONTAMINATED ZONE IDENTIFIED FOR SETTING UP ETP

<u>MAP OF LOHIANAGAR AND ADJOINING AREA</u> <u>SHOWING SEGMENTS A – E</u>

Quantification of Contaminated Groundwater

S. No.	Segment	Quantity of Contaminated Groundwater, Q=A*Wlf*Sp.Y.	Range of Hexavalent Chromium in Mg/L
1	Segment A	69,600 cu.m./yr.	Nil – 3.4
2	Segment B	2,08,800 cu.m./yr.	0.2 – 16.3
3	Segment C	52,200 cu.m./yr.	0.1 -1.3
4	Segment D	1,74,000 cu.m./yr.	1.3 – 15.4
5	Segment E	1,04,400 cu.m./yr.	Nil – 1.3

Thank you

www.keralatourism.org

Photo : Kuttiyapillai